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Abstract

Fungi produce mycotoxins in the presence of appatgpitemperature, humidity, sufficient
nutrients and if the density of the mushroom madavorable. Although all mycotoxins are
of fungal origin, all toxic compounds produced lyndi are not called mycotoxins. The
interest in mycotoxins first started in the 19683¢ today the interest in mycotoxin-induced
diseases has increased. To date, 400 mycotoximshb®en identified and the most important
species producing mycotoxins belongsAspergillus, Penicillium, Alternaria and Fusarium
genera. Mycotoxins are classified as hepatotoxiephrotoxins, neurotoxins, immunotoxins
etc. In this review genotoxic and also other heafflects of some major mycotoxin groups
like Aflatoxins, Ochratoxins, Patulin, Fumonisingearalenone, Trichothecenes and Ergot
alkaloids were deeply analyzed.

Key Words: Mycotoxin, Aflatoxins, Ochratoxin A, Réih, Fumonisins, Zearalenone,
Trichothecene, Ergot alkaloids, genotoxicity, healtfect

1. Introduction

Of the 14,000 fungal species identified in naturearly 2000 are known to be safe for
consumption and about 700 have important pharmgmabproperties (Kalac 2016). Fungi
produce mycotoxins in the presence of appropratgerature, humidity, sufficient nutrients
and if the density of the mushroom mass is faveréBlirbizel et al. 2015). Mycotoxins have
no significant effect on the growth and developmehtfungi, and these compounds are a
product of primary metabolic activities. Low-weighingal metabolites are not considered
mycotoxins (Bennett & Klich, 2003). The interestirycotoxins first started in the 1960s, and
today the interest in mycotoxin-induced diseaseshie®n increased. To date, 400 mycotoxins
have been identified and the most important spepreslucing mycotoxins belongs to
Aspergillus, Penicillium, Alternaria and Fusariurangra (Jahanian, 2016). Mycotoxins are
classified according to the affected tissue as toémans, nephrotoxins, neurotoxins,
immunotoxins by clinicians. In fact, none of thedassifications accurately reflects the
correct classification. For example, Aflatoxin is h@&patotoxic, mutagenic, carcinogenic
Aspergillus toxin (Bennett and Klich, 2003).

Mycotoxins can adversely affect many organs andesys such as liver, kidney, immune,
reproductive and developmental systems, and canledsl to cancer with their genotoxic and
carcinogenic properties (Becit et al., 2017). Téeesity of the damage caused by mycotoxins
in the body may vary depending on factors suchit@mn deficiency, energy deprivation,
alcohol use and infectious disease status. Althdbhghnegative effects of mycotoxins vary
depending on individual factors, it becomes pathagein the use of antibacterial,
chemotherapeutic or immunosuppressive drugs, ipteeence of human immunodeficiency
virus infection and other predisposing factors. cAlsmycotoxins act as potent
immunosuppressive agents that negatively affect uman cells (Jahanian, 2016).
Complications caused by mycotoxins are generathyjiar to pathologies caused by pesticides
or heavy metal residues. Mycotoxins worsen the ceffeof malnutrition and can
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synergistically interact with other toxins by inasing vulnerability to microbial diseases.
Although Fink-Gremmels et al. (1999), describessaivmethods of treatment for mycotoxin
exposure and few evidence regarding some Lactdbscstrains effectively bind dietary
mycotoxins (El-Nezami et al., 1998; EI-Nezami et 2002), there are almost no methods of
treatment for mycotoxin exposure out of supportiverapy (diet, hydration). Although the
number of people affected by mycotoxins is lessithi@e number of people affected by
bacteria, protozoan and viral infections, the exachber of affected people is still unknown.
However, according to the United Nations Food ampiculture Organization (FAO, 2001)
and the World Health Organization (WHO, 2000), 26B6rops such as hazelnuts, grains and
rice in the world are polluted by the growth of sh@nd fungi and therefore it is thought that
there may be chronic mycotoxin exposure in lardemtestimated number. It has been
determined that chronic mycotoxin exposure causestgxicity by oxidative stress, protein
synthesis inhibition, creating DNA addition prodsjcthanging DNA methylation and lipid
peroxidation (Wen et al, 2016). Therefore, deteatiom of genotoxic effects of chronic
mycotoxin exposure and measuring possible risksnapertant. In this article, the genotoxic
effect of major mycotoxins was evaluated alphaladificavoiding mycotoxin classifications.

2. Material and Methods

This work reviews the published literature abou¢ tpenotoxic and other health effects
of Aflatoxins, Ochratoxins, Patulin, Fumonisins, afalenone, Trichothecenes and Ergot
alkaloids.

2.1. Inclusion and exclusion criteria

This systematic review included all studies invging the genotoxic and health effects of
mycotoxins. The results were restricted to artiglegten in English.

2.2. Information sources

Owing to the medical nature of the question, therde was confined to Pubmed, Scopus,
Web of Science, and Google Scholar. Over 300 atistpaublished from 1989 to March 2020
including studies in bio-monitoring, animals, hureaand in vitro were found. The search
terms included combination of mycotoxin, Aflatoxin®chratoxins, Patulin, Fumonisins,
Zearalenone, Trichothecenes, Ergot alkaloids, geuty, genotoxic effects, genetic effects,
DNA damage, bio-monitoring, = chromosomal aberrationssister = chromatid
exchanges, micronuclei, comet, health effect.

3. Results
All results about genotoxicity of following mycotms are summarized in Table 1.
3.1 Aflatoxins

Aflatoxins, produced mainly bispergillus flavus and Aspergillus parasiticus, are hypertoxic
secondary metabolites and generally found in cereailk, tree nuts and oilseeds. Aflatoxins
are slightly solubile in water, insoluble in nongosolvents, soluble in strong polarity organic
solvents such as, chloroform and methanol. Thezel8rdifferent types of Aflatoxins (B1,
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B2, G1, G2, M1, M2, P, Q, etc.) and their moleculaights are between 312-346 g/mol.
Aflatoxins are named according to their abilitycmor in ultraviolet light. While AFB1 and
AFB2 give blue color, AFG1 and AFG2 give green cdBeng et al., 2018). AFM1 and
AFM2, on the other hand, are encoded with therléNE due to the fact that mammals that
consume food contaminated with aflatoxins are eapgdn the milk secretion and are
hydroxylated derivatives of AFB1 (Abdallah et &015). Although aflatoxin can be found at
a certain rate in the milk secretion of mammalss gtated that the aflatoxin exposure amount
of fetuses and infants is much lower than the aftex weaning (Khlangwiset et al., 2011).

Aflatoxins show acute toxicity at high doses andoait toxicity at sub-lethal doses. AFB1,
the most naturally occurring carcinogen, is defiasdgroup 1 carcinogen according to IARC
(IARC, 2012). It is stated that AFBL1 is clastogeagent and participates in the extrahepatic
cycle, leading to chromosomal abnormalities, miaaeus formation, sister chromatid
exchange, unscheduled DNA synthesis and DNA stiaadks (Corcuera et al., 2015). The
most important target organ of AFB1 is the livehese the toxin is metabolised mainly by
CYP1A2 and CYP3A4 and causes numerous mutationdicydarly in the p53 tumor
suppressor gene (Theumer et al., 2018). AFB1, wikietiso metabolized via prostaglandin H
synthase, causes oxidative stressivitro (Parveen et al., 2014) andvivo (Guindon et al.,
2007) conditions independent of enzymatic bioativa leading to mutagenic and genomic
instability therefore it poses a risk of genotoiiciChronic exposure to AFB1 has been
identified as an important risk factor in the deyghent of hepatocellular carcinoma (HCC),
especially in hepatitis B and C infected individu@Rushing & Selim, 2018; Hamid et al.,
2013). It has also been noted that aflatoxins day @ causal role in 5-28% of HCC cases
worldwide (Liu & Wu, 2010).

Detoxification of AFBlin metabolism completed byndoining hydroxylated metabolites
with sulfate and glucuronic acid, turning into suéf or glucuronide esters and finally excreted
in urine and bile. During biotransformation, a vegactive form occurs as a result of the
epoxidation of the double bond in the bifuran ringaflatoxins. It is stated that among these
compounds, the epoxy form of Aflatoxin B1 combinégth DNA to form the AFB1-N7-Gua
complex that is responsible for the carcinogenid genotoxic effects in the cells. While
epoxide radical of AFB1 causes molecular (incresseptosis, decrease p53 protein level),
biochemical (decrease mitochondrial activity, iras®@ reactive oxygen species, decrease cell
viability), and morphological (deterioration in tebmmunication, cell membrane damage)
changes (Reddy and et al., 2006), exoepoxide fdrassfFB1 causes mutation in p53 tumor
suppressor gene and induces cancer (Groopman &d{e2e05).

Aflatoxin contamination in cereals containing coand peanuts is still a public health
problem, especially in African countries. RecenBy,6% of the cereal samples have been
reported to be positive for at least one aflatdype and the largest amount was found in rice
(Andrade and Caldas, 2015). Gamma radiation andeoapplications offer great potential for
detoxification of aflatoxins in some food matricemthough most of the physical and
chemical methods for aflatoxin detoxification cdfeet the nutritional properties of food. In
fact, biological methods based on the removal gratiation of aflatoxins by bacteria and
yeasts have good perspectives, further researcheésled to clarify the detoxification
mechanisms by microorganisms and potential effeftsheir existence in food products
(Ismail et al. 2018). Nowadats, studies have beeunded on reducing aflatoxin concentration
in foods by using some nutritional components. Rwyghand Selim (2018) stated that
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applying acidic arginine solution prepared withanig acids (citric acid and phosphoric acid)
to contaminated foods, resulted decrease in AFBteadration up to >99% and it turned into
AFB2a-Arg complex. When the toxicokinetic effect§ the AFB2a-Arg complex were
evaluated, it was determined that the product vgigyhstable in biological fluids, it was not
metabolized by P450 enzymes, it had poor intestpeimeability/high intestinal flow
compared to AFB1, and did not have a mutagenicceffe same AFB1 mutagenic
concentrations. These results show that the coioveas AFB1 to AFB2a-Arg is a potential
strategy for detoxifying contaminated foods. It stated that the genotoxic effects of
aflatoxins, which show great resistance to tradaloprocesses applied to food or feed
processing, including pasteurization, sterilizateomd other thermal applications, can also be
suppressed by some dietary changes. Li et al. j2@p@arted that curcumin supplementation
decreased mutagenic effect of AFB1 by reducingléeotreactive oxygen species (ROS) and
8-hydroxy-2'- deoxyguanosine (8-OHdG), also acésatthe Nrf2 signaling pathway.
Therefore, curcumin should be considered a poleagant for the prevention of AFB1-
induced toxicity. In another study, it was foundatthcurcumin was protective against
genotoxicity created by AFB1 in liver (Abdel-Wahhab al., 2016). It is stated that a key
factor for reducing AFB-induced carcinogenesis kpegimental animals may results of
enhancing detoxification enzymes such as certaitatjflione-S-transferases regulated by the
Keapl-Nrf2-ARE signal path. Drugs that are a prgimial inducer of antioxidant response,
such as “Ditiolthione” and “Oltipraz”, and dietacpmponents such as “Sulforafan” are also
effective inducers of this pathway in rodent mod@soss-Steinmeyer and Eaton, 2012).
Sulforafan is a compound in the isothiocyanate grofiorganosulfur compounds, and it is
stated that garlic with high sulfur component sogbrotective against genotoxicity caused by
AFB1 (Guyonnet et al., 2002). It is stated thatetegles in the Apiaceous and Brassica
families may be protective against genotoxicitysealiby aflatoxins by inhibiting CYP1A2
activity and by changing the expression of livezyenes involved in oxidation of aflatoxins,
respectively (Gross-Steinmeyer & Eaton, 2012). @digh it is stated that lactic acid bacteria
also play an antigenotoxic role by removing genmtexike AFB1 and AFM1 from the
environment, this protective role may differ betwespecies and even strains. Therefore,
studies are underway to identify strains with sigsgpotential protection against Aflatoxin-
induced genotoxicity (Kurhan & Cakir, 2017).

3.2 Ochratoxins

Ochratoxins are produced IRBenicillium and Aspergillus fungi and are generally found in
products such as cereals, coffee, cocoa, spices,\wme, dried fruit and animal feed (EFSA,
2006) and have more than 10 derivatives. OchratAi®TA) is the most common and toxic
mycotoxin. OTA is at least ten times more toxicrtleechratoxin B, ochratoxin C or citrine,
and has been identified by IARC as a possible hucaatinogen in Group 2B. Although the
maximum OTA limit for unprocessed grains and preedsgrain products has been set by
many countries and organizations, no limit hasbgsn set for OTB and OTC (Qileng et al.,
2018). OTA is generally produced during storagethe presence of suitable humidity,
temperature and other environmental conditions ¢{oat al., 2015). Compared to other
foods, contaminated grain-based foods are the mgsbrtant cause of OTA exposure in
humans (Kuiper-Goodman et al., 2010). It has breported in various studies that OTA is
also found out of cereal-based foods such as coffefuri et al. (2004) found that 50% of
cocoa powder samples contain OTA in the range2# t 0.77 pg/kg, Petkova-Bocharova et
al. (1985) stated that 16.7% of bean samples co@&A in the range of 25-27 pg/kg, 27.3%

5



204
205
206
207
208
209
210
211
212
213
214
215

216
217
218
219
220
221
222

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

of corn samples were in the range of 25:8%g, and 9% of wheat flour samples were in the
range of 10-2qug/kg. However, OTA exposure poses a risk not oatyaldults but also for
infants. In Portugal, it has been reported that @3 found in baby foods and in a significant
number of processed cereal-based foods produceshildren (Alvito et al., 2010; Assung¢ao
et al., 2016). Kamali et al. (2017), reported OatA was detected in 84 human milk samples
at concentrations ranging from 0.11 to 7.34 ng/mvhjle 14 samples were found to have
risky rates (> 3 ng / mL). Babies are more sersitoy the effects of mycotoxins because of
their higher metabolic rate, lower body weight, ited ability to detoxify genotoxic
compounds and the development of certain tissug®agans. For this reason, it is important
to prevent contaminated food consumption of mothérs the other hand, it is stated that
exposure to intrauterine OTA may increase the aklcancer later in life (Woo and El-
Nezami, 2016).

While exposure to OTA has been associated withnabien of diseases that affect the kidney,
both in animals and humans, it has also been mghdid be associated with stomach,
esophagus and testicular cancer (PfoHleszkowicz and Manderville, 2007). In addition to
nephrotoxicity, neurotoxicity, immunotoxicity, myebxicity, reproductive toxicity and
teratogenicity was also reported (Costa et al.620QTA has also been shown as the cause of
Balkan Endemic Nephropathy, a chronic progressidady disease associated with upper
urothelial system tumors in humans (Pfohl-Leszkaw&009).

OTA is structurally similar to phenylalanine ancetéfore inhibits many enzymes that use
phenylalanine as a substrate, such as phenylaltRMA synthetase. In addition, it
contributes formation of reactive oxygen specidseshibiting activation of protein-1, Nrf2
activation, glutathione-S-transferase and cytogtote enzymes, and damages the cell
membrane by increasing lipid peroxidation (Marinakuet al., 2011). These effects are the
mechanisms underlying the carcinogenic effects ®AOIn addition; inhibition of protein
synthesis, mitochondrial respiration and ATP foiliorgt disruption of calcium homeostasis
are other factors explaining its genotoxic acti{iBupta et al., 2018; Costa et al., 2016). Cell-
based analysis, transcriptomic analysis of resaligs and cultured cells shows that OTA can
disrupt post-translational protein modificationser{dings et al., 2012). In a study to
investigate the genotoxic effect of OTA, authongomted that it leads structural and numerical
changes in chromosomes by inhibiting histone-adegyisferase (HAT) enzyme, disrupting
DNA repair, cell cycle control and mitosis erropag (Bouslimi, 2008). It has also been
reported in different studies that OTA causes karggaly, genetic instability and
tumorigenesis by HAT inhibition (Czakai et al., 20IMally 2012). Studies have been
conducted to suppress the oxidative effect of OTahwutritional components, using
antioxidants (vitamin E), phenolic compounds (chites and quercetin), melatonin and zinc,
showed that these antioxidants have not alwaysedltthe OTA toxicity (Sorrenti et al.
2013). Meki and Hussein (2001) reported that melatalid not change the level of lipid
peroxidation products but increased the level afaghione peroxidase, glutathione reductase
and glutathione-S-transferase. In a study evalgate effectiveness of vitamin E for OTA
and citrine genotoxicity, it was reported thatetluces ROS levels and cytotoxicity in HepG2
cells, but genotoxic damage cannot be preventeglatety (Gayathri et al., 2015). Zheng et
al. (2013), reported that zinc reduced the cytaitxof OTA by inhibiting DNA damage and
regulating the expression of zinc-related geness Btudy also showed that zinc helps
maintain DNA integrity through DNA strand breakshydroxy-2deo-deoxyguanosine (8-
OHdG) formation and reduction of DNA hypomethylatioln a study evaluating the

6
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effectiveness of polyphenols (luteolin, chlorogemicid and caffeic acid) against DNA
damage caused by OTA, it was found that these pelypls reduced DNA damage and the
most positive effect was found by chlorogenic adriddi et al., 2015). In another study,
epigallocatechine gallate and epicatechin gallasrewdecreased the level of increased
reactive oxygen species (Costa et al., 2007). éwal (2010) stated thattocopherol reduces
OTA-induced cytotoxicity and DNA damage in fibrosiacells. In addition, quercetin has
been reported to prevent OTA-induced oxidativessti@nd apaptosis, inhibit caspase cascade
activation leading to DNA fragmentation, and exhiintigenotoxic potential by relieving
DNA damage and micronucleus (MN) formation (Ramgad Padma, 2013).

3.3 Patulin

Patulin (Raistrick, 1943), first isolated froRenicillium griseofulvum by Harold Raistrick in
1943, is a mycotoxin produced mainly by Aspergiltusd Penicillium and is found in fruits
such as grapes, pears and peaches, especiallplesafi is in Group 3 according to IARC's
carcinogenic risk classification. The World Heafiinganization has determined the safety
level for patulin in apple juice to be 50 pug/L (WH@005) and this amount complies with
FDA and European Union recommendations (FDA, 2@25, 2002). In addition, this limit is
10 pg/L for apple-based foods produced for childaex babies. In a study conducted in
Qatar, it was stated that apple-based baby produetsound to have products above these
limits (Hammami et al., 2017). In a study condudate€hina, it was stated that 17.5% of 137
products examined PAT level was at doses aboveg&yg(Ji et al., 2017). Although high
PAT levels affect all races, genders and age grdbhpse is an increased risk for infants and
babies. Even Patulin exposure below the tolerakddy dlevel of mothers who are
breastfeeding, it can lead to exposure above tleeatde level for babies and infants (Saleh
and Goktepe, 2019).

Patulin is highly toxic to liver, kidneys, gastrtestinal tract and immune system. In addition,
in many cell-based and animal-based studies, PATbean reported to be a risk factor for
genotoxicity, embryotoxicity, cytotoxicity, neurcdgity, immunotoxicity, carcinogenicity
and teratogenicity (Ramalingam et al., 2018). Ratahn react with aminoacids such as
cysteine, lysine, histidine, and make covalent @alis with electrophilic chemicals. These
properties cause PAT toxicity (Saleh and Goktep#, 92 In addition to these toxicity
mechanisms, it activates the Rpn4 transcriptiomofacausing overexpression of the Rpn4
gene and shows genotoxic effect. Its overexpressaas to protein breakdown and
proteotoxicity (Guerra-Moreno, 2017). In anotheardst on the mutagenic effect of PAT, it
was found that it stimulates the expression of ggoptotic protein ATF3 and thus causes
reduction in cell growth (Kwon et al., 2012). PATcreases the expression of some autophagy
markers (LC3-1l and LC31), causing autophagic systactivation. Autophagic system
activation involves selective cleavage of cytoplesorganelles as well as bulk degradation
of some cytoplasmic proteins and causes DNA danfage et al., 2012). PAT is highly
reactive to the thiol groups of proteins and ghitate (GSH), and therefore it has been
reported that patulin causes mutagenic effecteasly in cells with low glutathione levels,
lead to chromosome damage and increase micronufdemsition. (Puel et al., 2010). In a
study conducted to evaluate the effects of GSH atulid-induced DNA damage, N-
acetylcysteine (NAC), which is a GSH precursor, vébd prevention for chromosomal
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damage. These results show that GSH plays an iangorole in cellular defense against
PAT-induced genotoxicity (Zhou et al., 2009). lrudies to reduce oxidative stress and
chromosomal abnormalities induced by PAT, it idestahat substances showing antioxidant
and antigenotoxic activities can correct these tneg@ffects.Rhodotorula mucilaginosa (Li

et al., 2019) andrRhodosporidium paludigenum (Zhu et al., 2015) are important species that
can suppress negative effects of PAT. It is stabad plant polyphenols can be protective
against PAT-induced genotoxicity like other mycobh®x Song et al. (2014) found that green
tea polyphenols are protective against hepatotiyxemd genotoxicity of PAT. In another
study, it was observed that oxidative stress araptaypic damage caused by PAT decreased
with green tea components (Jayashree et al., 2017).

3.4 Fumonisins

Fumonisins (Fumonisin B1 (FB1), Fumonisin B2 (FB&)d Fumonisin B3 (FB3)) are
carcinogenic and genotoxic secondary metaboliteedan corn-based foods worldwide and
are produced byrusarium verticillioides and F. proliferatum (Khan et al., 2018). Among
these species, the most known and toxic specieBlisand it was isolated from the culture of
F. verticillioides MRC 826 in 1988 by Gelderblom et al. (1988). Ia tbllowing years, it was
found that there was a strong positive correlabetween fumonisins related eusophageal
tumor incidence and contaminated corn consumptignt¢ 155 ppm, FB1) (Chu and Li,
1994; Van der Westhuizen et al., 2010) and liveicea and neural tube defects (Raeli al.,
2019). Fumonisins enter the food chain by corn gmodindwater consumption (Mlaewicz

et al., 2015). Industrial food production is seen am effective tool for preventing and
reducing food contamination by FB1. Therefore, [EBfhcentrations in maize-based foods are
generally low in western countries, where indukfoad production and consumption is more
intense. In contrast, corn grown in South Amerara] Africa is more often infected by fungi
producing fumonisin due to unfavorable climatic dibions and improper planting and
storage conditions (Dutton, 2009). FB1 is defingdARC as a possible human carcinogen in
Group 2B, and shows genotoxic activity via oxidatstress, DNA damage, cell cycle arrest,
apoptosis, inhibition of mitochondrial respiratiamd deregulation of calcium homeostasis
(Radk et al., 2019). However, the question of whethendaisins have genotoxic effects is
still controversial, and data in the literaturerdat fully support the assumption that FB1 is a
genotoxin. It has been stated in some studiesRBatis a genotoxic compound (Domijan et
al., 2015) and the underlying reason is oxidativess-increasing effect (Mary et al., 2012).
In addition, it is stated that it may have genotoxaffects with changes in DNA
methylase/demethylase balance and epigenetic mieam&isuch as DNA hypomethylation.
Other physiopathological features of fumonisins #rat they inhibit ceramide synthase
activity and cause imbalances in cell lipid metaol It is also estimated that the
deterioration of FB1-induced sphingolipid metaboliplays a key role in FB1 toxicity.
Ceramide and sphingosine-1-phosphate (S1P) plagstpproles in mammalian cells, and
their relative levels can affect the final destiofythe cell. Fumonisins change apoptosis
balance by causing ceramide depletion, accumulatiosphing and high sphingosine 1-
phosphate (S1P) production (Claudino-Silva et 2018). However, it is stated that the
apoptotic effects of fumonisins are still contrasiat. It was defined as pro-apoptotic (Ribeiro
et al. 2010; Jones et al. 2001) or anti-apoptdimppana et al., 2014; Mullen et al., 2012).
However, it has been suggested that decreased ideramincreased production of S1P may
result increased tumor formation in cancer celld #me development of drug resistance
mechanisms in these cells (Bondy et al., 2012). @irtee most prominent features of FB1-
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borne tumors is their aggressive growth charadtesisand their high metastasis potential
(Mller et al., 2002).

It is stated that these negative effects of fumosigan be reduced/prevented with some
probiotics and herbal extracts. Lactic acid baatéractobacillus paracasei BEJO1) (Abbés et
al., 2016) and gingseng extract (Hassan et al5pR8dppress increased DNA fragmentation
and increase antioxidant enzyme levels. Extractaqpilegia vulgaris L. have also been
found to be protective against FB1-induced oxidattress and cytotoxicity (Hassan et al.,
2010).

3.5 Zearalenone

Zearalenon (ZEA), a macrocyclic resorcyclic acidtdéme, is a non-steroidal estrogenic
mycotoxin produced by Fusarium fungi. The EuropBaion stated that the maximum ZEA
level for unprocessed grains should be 100 ug/kg, @07). ZEA is found in barley, rice,
corn and other grains on almost all continents@dalso be classified as xeno-estrogen due
to its chemical similarity to estrogen. ZEA’'s egfen-like nature (shows f+estradiol-like
activity) allows it to bind to estrogen receptorslaauses biological accumulation. Although
ZEA and its metabolitesi{ZOL andp-ZOL) are excreted through feces and urine as both
free compounds and glucuronide conjugates, theadaumulation can lead to disruption of
the hormonal balance of the body and, as a rethdy, may cause numerous reproductive
system diseases such as prostate, ovarian, ceovitabast cancer. It is also stated that ZEA
can cause phagolysosomal damage in the kidneys éGalo, 2013). The mutagenic activity
of ZEA, which is also stated to cause genotoxidvagtby causing micronucleus and
chromosome aberrations, DNA strand breaks and Déithctions, is still a matter of debate.
ZEA, listed as a Group 3 carcinogen by IARC, haanbeported to induce spontaneous breast
tumors, hepatocarcinoma, and esophageal cancetemu®, increase cell proliferation in
MCF-7 breast cancer cells and neuroblastoma SK-Ne8Hs (Abassi et al., 2016). In
addition, it has been stated that exposure to ZEémbryonic kidney cells (HEK293) causes
DNA strand breaks dose dependently (Gao et al3)201

There is evidence that the negative effects of Zkich exhibit high stability during storage
and do not deteriorate when exposed to high terypess can be eliminated by some
nutritional components and probiotic bacteria. Belgm et al. (2019) stated that ZEA causes
an increase in the frequency of polychromatic epgite and chromosomal abnormalities in
bone marrow cells, and they also showed thattobacillus plantarum MONO3 strain
prevents this increase and consequently may beqinge against DNA fragmentation and
genotoxic activity. In a study on colorectal caarima cells (HCT-116), kefir was found to be
protective against increased cell proliferation anadative stress caused by ZEA (Golli-
Bennour et al., 2019). The protective role of pleetondary metabolites against the adverse
effects of ZEA has also been frequently investigateis stated that 4-methylthio-3-butenyl
isothiocyanate extracted froRaphanus sativus may be protective against the genotoxic and
clastogenic effects of ZEA (Salah- Abbes et alQ®0 Vitamin E has also been found to be
protective against increased ZEA induced unschddOIBIA synthesis and chromosomal
aberrations (Ben Othmen et al., 2008).
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3.6 Trichothecenes

Trichothecenes (C-4, C-15) are divided into maccbcyand non-macrocyclic trichothecenes
and are generally found in barley, wheat, rye, cand oats. More than 180 trictothecene
mycotoxins have been identified in the last 40 geand its epoxy group (C-12, C-13) is
thought to be responsible for toxic effects. Clahisigns of exposure to trichothecenes are;
emesis, weight loss, immunomodulation, coagulopatilgeding and cellular necrosis of
mitotically active tissues (intestinal mucosa, skioone marrow, ovary, testicle, spleen)
(Mostrom and Raisbeck, 2007). The most toxic membafr trichothecene, which are
classified in four groups as A, B, C and D, are ##n from group A and Deoxynvalenol
(DON) toxin from group B. It is stated that T-2 boex which belongs to class A of
trichothecene, is frequently detected in cerealpd@sntaken from EU member countries
(Escriva et al., 2015). T-2 toxin inhibits proteynthesis and subsequently disrupts DNA and
RNA synthesis. In addition, exposure to this tosirassociated with leukopenia in lymphoid
organs, inhibition of erythropoiesis in the bonerma and spleen. The genotoxic mechanism
of T-2 toxin, which has an immunosuppressant featiiat disrupts the maturation process of
dendritic cells by reducing the proliferative respe of lymphocytes, is not fully known.
However, it is thought that genotoxic activity ofZTdue to neutralizing glutathione, inducing
lipid peroxidation, disrupting DNA and RNA synthgsirhe tolerable maximum level of T-2
toxin and its major metabolite HT-2 toxin, was detmed as 100 ng/kg/bw (EFSA, 2011).

DON, one of the best known trichothecenes and ifiledsas group 3 carcinogen, inhibits

protein synthesis by interfering with the activeppayl transferase region in ribosomes. In
addition, binding of DON to the ribosome in eukargocells creates a "ribotoxic stress
response” involving phosphorylation of mitogen-aated protein kinases (MAPKSs). MAPKs

activation modulates the expression of genes asgocivith immune response, chemotaxis,
inflammation and apoptosis (Escriva et al., 20T%)e maximum tolerable daily intake has
been set atyig/kg/bw by FAO/WHO (JECFA, 2011).

It was found that DON increased DNA damage by 46i8%hicken lymphocytes and it was
stated that consuming DON-contaminated diets inkioation with low protein feed may
induce DNA damage (Awad et al.,, 2012). Yang et (aD14) stated that DON causes
chromosome and DNA damage, reduces cell viabiligreases lipid peroxidation, 8-OHdAG
and reactive oxygen species. In addition to thelatwie stress caused by DON's genotoxic
activity, it has been shown to reduce the expressiciO-1 protein and prevent DNA repair.

Although it is stated that NIV from another B grotnrhothecene induces chromosomal
aberration in fibroblast cells, it is stated thatalobtained from sister chromatid exchange
test, chromosomal abnormality test and Comet test cdntradictory and a definitive
assessment cannot be made about the genotoxit @ffdtv (Becit et al. 2017). Satratoxin H
from group D trichothecene has structurally simitafT-2 toxin but 5 times more toxic than
T-2. It has been reported that NIV caused apoptosiseased DNA fragmentation and strand
breaks in pheochromocytoma cells (PC-12) (Nusugtetnal., 2012). Studies on protective
compounds that are thought to reduce the genoagéact of trichothecenes are ongoing. It is
stated that Silymarin and inulin nanoparticles dased high liver enzyme activity,
chromosomal damage, DNA fragmentation, oxidativesst and negative histological changes
in liver tissue (Abdel-Wahhab et al., 2018).

3.7 Ergot Alkaloids
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Claviceps purpurea can synthesize about 40 Ergot alkaloids (EAs) winious chemical
structures, and these alkaloids can turn into giseacid, which is toxic to humans and
animals. EAs may be an agonist or antagonist t@drenaline, dopamine and serotonin
neurotransmitters because compounds derived frdieelgic acid are structurally similar to
these neurotransmitters. The most known EAs areorfetyin, Ergokornin, Ergokristin,
Ergokriptin, Ergosin and Ergotamin. These toxires miostly found in cereal products such as
rye, wheat, barley, corn, triticale, oats, millatasorghum (Bryla et al., 2019). Although there
are no regulations regarding maximum EAs limitaunprocessed grain or corn products in
the European Union, the concentration of ergotretke in unprocessed grains is legally
limited to 0.5 g/kg/bw. However, it is stated thiais limit may threaten human health due to
the presence of significant amount of EAs in cesaahples containing less than 0.5 g/kg/bw
ergot sclerotia (Bryla et al., 2018).

Ergot poisoning can cause physiological problemshsas vasoconstriction/vasodilation,
diarrhea, gangrene, miscarriage, internal bleedingpntrolled muscle contractions, as well
as psychological problems (hallucinations). Anotfesature of these alkaloids is that their
cytotoxic effects. In a study evaluating the cyxtoeffect of Ergometrin, Ergokornin,

Ergokristin, Ergokriptin, Ergosin and Ergotamin, was determined that EAs except
Ergometrin showed cytotoxic effect and caused agmipt(Mulac and Humpf 2011). Studies
on the genotoxic activity of EA's are very limitdd.EFSA's report (2012), it was stated that
genotoxicity studies related to EAs’ except ergatenare insufficient. Studies evaluating the
genotoxic and mutagenic effects of ergotamine Hdededifferent results. In the study of

Roberets and Rand (1977), it was stated that ergoéa can induce chromosomal
abnormalities in human lymphocytes and leukocytesifried et al. (2006) found that

Ergotamine does not show mutagenic effects in mémaphoma cells. In another study, it
has been reported that ergotamine and ergometrindweers of sister chromatid change in
ovarian cells, ergocristine is slightly inductivadaergocriptine is not effective (Dighe and
Vaidya, 1988). Further studies are need to evalgatetoxic and mutagenic efficacy of EAs.

4. Conclusion

According to the Food and Agriculture Organizatidviorld Health Organization and some
scientific data, a significant part of the edibteods in the world, especially cereals, are
contaminated with mold and fungi. Therefore, a ifigant part of the world population is
exposed to chronic mycotoxin exposure. Many stublasg reported that chronic mycotoxin
exposure causes genotoxicity by triggering oxigatstress, inhibiting protein synthesis,
creating DNA addition products, altering DNA metdtybn, causing lipid peroxidation.
Therefore, it is essential to develop measuresdaae or prevent genotoxic effects of chronic
mycotoxin exposure.
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